organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(4-Bromophenyl)-6-methyl-4*H*-1benzopyran-4-one (4'-bromo-6-methylflavone)

Tomasz Janeczko,^a Agata Białońska^b* and Edyta Kostrzewa-Susłow^a

^aDepartment of Chemistry, Wrocław University of Environmental and Life Sciences, 25 Norwida, 50-375 Wrocław, Poland, and ^bFaculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland Correspondence e-mail: bialonsk@eto.wchuwr.pl

Received 18 March 2010; accepted 22 March 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.028; wR factor = 0.070; data-to-parameter ratio = 34.7.

Planar (r.m.s. deviation from the plane through all non-H atoms = 0.036 Å) molecules of the title compound, $C_{16}H_{11}BrO_2$, form a layered structure stabilized by C-H···O hydrogen bonds and π - π stacking interactions.

Related literature

For background information on flavones and their properties, see: Hsiao *et al.* (2007); Manthey *et al.* (2001); Middleton *et al.* (2000). Millot *et al.* (2009); Moulari *et al.* (2006); Ren *et al.* (2003); Moon *et al.* (2007). For related structures, see: Kumar *et al.* (1998); Artali *et al.* (2003); Białońska *et al.* (2007); Ghalib *et al.* (2010).

Experimental

Crystal data

 $\begin{array}{l} C_{16}H_{11}\text{BrO}_2\\ M_r = 315.16\\ \text{Monoclinic, } P2_1/c\\ a = 13.759 \ (3) \ \text{\AA}\\ b = 6.873 \ (2) \ \text{\AA}\\ c = 13.460 \ (2) \ \text{\AA}\\ \beta = 90.25 \ (3)^\circ \end{array}$

V = 1272.8 (5) Å ³
Z = 4
Mo $K\alpha$ radiation
$\mu = 3.22 \text{ mm}^{-1}$
T = 100 K
$0.31 \times 0.29 \times 0.04$ mm

Data collection

Kuma KM-4-CCD diffractometer Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009); analytical numeric absorption correction using a multifaceted crystal model based on expressions

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.028 & 172 \text{ parameters} \\ wR(F^2) &= 0.070 & H\text{-atom parameters constrained} \\ S &= 0.88 & \Delta\rho_{\text{max}} &= 0.69 \text{ e } \text{\AA}^{-3} \\ 5962 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.37 \text{ e } \text{\AA}^{-3} \end{split}$$

derived by Clark & Reid (1995)]

 $T_{\min} = 0.474, T_{\max} = 0.893$

25822 measured reflections

 $R_{\rm int} = 0.047$

5962 independent reflections

3659 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

			2	<i>D</i> 11 11
$C3-H3A\cdots O4^{i}$ $C16-H16A\cdots O4^{i}$	0.95	2.49	3.2904 (17)	142
	0.95	2.58	3.4394 (16)	151

Symmetry code: (i) -x + 1, -y, -z + 1.

Table 2

 π - π interactions (Å, °).

Cg(1) and Cg(2) are the centroids of the C5–C10 and C11–C16 rings, respectively.

Cg(I)	Cg(J)	Cg–Cg	Alpha	CgI_perp	CgJ_Perp	Slippage
$Cg(1) \\ Cg(1)$	$Cg(2)^i$	3.895	7.13 (3)	3.579 (2)	-3.430 (2)	1.84
	$Cg(2)^{ii}$	3.843	7.13 (3)	-3.266 (2)	3.438 (2)	1.72

Notes: Cg-Cg = distance between ring centroids; Alpha = dihedral angle between planes *I* and *J*; CgI_Perp = perpendicular distance of Cg(I) on ring *J*; CgJ_Perp = perpendicular distance of Cg(J) on ring *I*; Slippage = distance between Cg(I) and perpendicular projection of Cg(J) on Ring *I*. Symmetry codes: (i) $1 - x, -\frac{1}{2} + y, \frac{1}{2} - z$; (ii) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* (Bruker, 1999); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2025).

References

- Artali, R., Barili, P. L., Bombieri, G., Re, P. D., Marchini, N., Meneghetti, F. & Valenti, P. (2003). Farmaco, 58, 875–881.
- Białońska, A., Ciunik, Z., Kostrzewa-Susłow, E. & Dmochowska-Gładysz, J. (2007). Acta Cryst. E63, 0430–0431.
- Bruker (1999). XP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.
- Ghalib, R. M., Mehdi, S. H., Hashim, R., Sulaiman, O., Valkonen, A., Rissanen, K. & Trifunović, S. R. (2010). J. Chem. Crystallogr. doi, 10,1007/s10870-010-9687-9.
- Hsiao, Y.-C., Kuo, W.-H., Chen, P.-N., Chang, H.-R., Lin, T.-H., Yang, W.-E., Hsieh, Y.-S. & Chu, S.-C. (2007). *Chem. Biol. Interact.* **167**, 193–206.
- Kumar, S., Ramanathan, T., Subramanian, K. & Steiner, T. (1998). J. Chem. Crystallogr. 28, 931–933.

- Manthey, J. A., Grohmann, K. & Guthrie, N. (2001). Curr. Med. Chem. 8, 135–153.
- Middleton, E. Jr, Kandaswami, C. & Theoharides, T. C. (2000). *Pharmacol. Rev.* **52**, 673–751.
- Millot, M., Tomasi, S., Studzinska, S., Rouaud, I. & Boustie, J. (2009). J. Nat. Prod. 72, 2177–2180.
- Moon, T. C., Quan, Z., Kim, J., Kim, H. P., Kudo, I., Murakami, M., Park, H. & Chang, H. W. (2007). *Bioorg. Med. Chem.* **15**, 7138–7143.
- Moulari, B., Pellequer, Y., Lboutounne, H., Girard, C., Chaumont, J. P., Millet, J. & Muyard, F. (2006). J. Ethnopharmacol. 106, 272–278.
- Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Yarnton, England.
- Ren, W., Qiao, Z., Wang, H., Zhu, L. & Zhang, L. (2003). Med. Res. Rev. 23, 519–534.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2010). E66, 0966-0967 [doi:10.1107/S1600536810010718]

2-(4-Bromophenyl)-6-methyl-4H-1-benzopyran-4-one (4'-bromo-6-methylflavone)

T. Janeczko, A. Bialonska and E. Kostrzewa-Suslow

Comment

Seeds, fruit skin, bark and flowers of most plants contain significant amount of flavonoids. They have been classified to one subclass of flavonoids according to their chemical structures (Hsiao *et al.*, 2007). Several naturally occurring and synthetic flavones are well know in respect to their anti-oxidant, anti-neoplastic, anti-malarial, anti-inflammatory and insecticidal activity (Manthey *et al.*, 2001; Millot *et al.*, 2009; Moulari *et al.*, 2006). Halogenoflavones have been used as precursors for the synthesis of a variety of bioactive organic compounds including biflavodoids (Ren *et al.*, 2003; Moon *et al.*, 2007). The title compound is a flavone derivative with 4'-bromo and 6-methyl substituents in the biologically active region (Scheme) (Middleton *et al.*, 2000).

Crystal structures of the following related flavones were reported: 7-hydroxyflavone monohydrate (Kumar *et al.*, 1998), 6-(3-hydroxy-3-methylbut-1-ynyl)-flavone and 6-(3-methylbut-3-en-1-ynyl)-flavone (Artali *et al.*, 2003), 2-phenyl-6-hydroxy-4*H*-1-benzopyran-4-one (6-hydroxyflavone) (Białońska *et al.*, 2007), 3,5,4'-trihydroxy-6,7-dimethoxy-flavone (Euplitin) (Ghalib *et al.*, 2010).

Structure of 2-(4-bromophenyl)-6-methyl-4*H*-1-benzopyran-4-one with the numbering scheme employed is presented in Fig. 1 Molecules of the titled compound form ribbons stabilized by π - π stacking interactions exteded along the [010] direction (Table 2). The neighboring ribbons are linked by C—H···O hydrogen bonds, in which the carbonyl O4 atom is their acceptor (Table 1). The resulting layers perpendicular to the [100] direction (Fig. 2).

Experimental

The title compound was obtained according to the procedure: A mixture of the para-cresol 1,08 g (10,0 mmol) and 3,4'dibromopropiophenone 0,59 g (2,0 mmol) in BF3.OEt2 (20 ml) was heated at 60 °C and stirred for 8 h. The products of reaction were extracted from the mixtures with chloroform. Titled product was separated by column chromatography on silica gel with hexane/methyl chloride/acetone (10:1:1 v/v/v) as eluent (Scheme). Crystals suitable for X-ray structure analysis were obtained by slow evaporation from the eluent at room temperature. Structure of the titled product was confirmed by means of the 1H NMR and 13 C NMR spectra. 1H NMR (600 MHz, CDCl3 δ , p.p.m.): 6.81 (s, 1H, H3), 7.48 (d, 1H, J=8.56 Hz, H8), 7.54 (dd, 1H, J=8.56, 2.12 Hz, H7), 7.68 (m, 2H Wh=8.60 Hz, H5' and H7'), 7.80 (m, 2H, Wh=8.60 Hz, H2' and H6'), 8.04 (d, 1H, J=2.12 Hz, H-5). 13 C NMR (150 MHz, CDCl3 δ , p.p.m.): 20.98 (-CH3); 107.55 (C3); 117.83 (C8); 123.56 (C10); 125.13 (C5); 126.25 (C6); 127.71 (C3' i C5'); 130.84 (C1'); 132.35 (C2' i C6'); 135.21 (C7); 135.47 (C4'); 154.48 (C9) 162.23 (C2); 178.48 (C4).

Refinement

Non-hydrogen atoms were refined with anisotropic displacement parameters. All H atoms were placed at calculated positions and were treated as riding atoms, with C—H distances of 0.95 - 1.00 Å.

Figures

Fig. 1. Selected view of 4'-bromo-6-methyloflavone with the numbering scheme employed.

Fig. 2. Molecular packing of 4'-bromo-6-methyloflavone.

2-(4-Bromophenyl)-6-methyl-4H-1-benzopyran-4-one

Crystal data	
$C_{16}H_{11}BrO_2$	F(000) = 632
$M_r = 315.16$	$D_{\rm x} = 1.645 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 11464 reflections
<i>a</i> = 13.759 (3) Å	$\theta = 3.0 - 36.9^{\circ}$
<i>b</i> = 6.873 (2) Å	$\mu = 3.22 \text{ mm}^{-1}$
c = 13.460 (2) Å	T = 100 K
$\beta = 90.25 \ (3)^{\circ}$	Plate, colorless
$V = 1272.8 (5) \text{ Å}^3$	$0.31\times0.29\times0.04~mm$
Z = 4	

Data collection

Kuma KM-4-CCD diffractometer	5962 independent reflections
Radiation source: fine-focus sealed tube	3659 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.047$
ω scan	$\theta_{\text{max}} = 36.0^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009); analytic- al numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]	$h = -22 \rightarrow 22$
$T_{\min} = 0.474, \ T_{\max} = 0.893$	$k = -11 \rightarrow 10$
25822 measured reflections	$l = -21 \rightarrow 22$

Refinement

Definement on E^2	Primary atom site location: structure-invariant direct
Remement on F	methods

Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.028$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.070$	H-atom parameters constrained
<i>S</i> = 0.88	$w = 1/[\sigma^2(F_o^2) + (0.0385P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
5962 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
172 parameters	$\Delta \rho_{max} = 0.69 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.37 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.33.42 (release 29-05-2009 CrysAlis171 .NET) (compiled May 29 2009,17:40:42) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and i	isotropi	ic or e	quivalent	isotrop	pic dis	placement	parameters	$(Å^2$)
				1		1	1			1	1	/

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br	0.122301 (8)	0.12666 (2)	0.048602 (10)	0.02299 (4)
01	0.59232 (6)	0.12638 (15)	0.20324 (6)	0.01526 (15)
C2	0.51619 (8)	0.12091 (19)	0.26748 (8)	0.01346 (19)
C3	0.52887 (8)	0.1170 (2)	0.36736 (8)	0.0158 (2)
H3A	0.4733	0.1138	0.4089	0.019*
O4	0.63780 (7)	0.11445 (16)	0.50391 (6)	0.02132 (18)
C4	0.62442 (8)	0.1176 (2)	0.41278 (9)	0.0152 (2)
C5	0.80289 (8)	0.1197 (2)	0.37337 (9)	0.0158 (2)
H5A	0.8173	0.1160	0.4424	0.019*
C6	0.87838 (8)	0.1235 (2)	0.30587 (9)	0.0173 (2)
C7	0.85504 (9)	0.1311 (2)	0.20364 (9)	0.0188 (2)
H7A	0.9062	0.1348	0.1565	0.023*
C8	0.76018 (9)	0.1335 (2)	0.17014 (9)	0.0179 (2)
H8A	0.7459	0.1396	0.1011	0.021*
C9	0.70523 (8)	0.1212 (2)	0.34182 (8)	0.01366 (19)
C10	0.68548 (8)	0.1267 (2)	0.24016 (9)	0.01469 (19)
C11	0.42181 (8)	0.12034 (19)	0.21497 (8)	0.01378 (19)
C12	0.41819 (9)	0.1370 (2)	0.11092 (9)	0.0170 (2)
H12A	0.4768	0.1477	0.0743	0.020*

supplementary materials

C13	0.32929 (9)	0.1380 (2)	0.06124 (9)	0.0181 (2)
H13A	0.3269	0.1486	-0.0091	0.022*
C14	0.24418 (8)	0.1234 (2)	0.11563 (9)	0.0169 (2)
C15	0.24576 (9)	0.1070 (2)	0.21903 (10)	0.0184 (2)
H15A	0.1869	0.0980	0.2553	0.022*
C16	0.33448 (9)	0.1041 (2)	0.26785 (9)	0.0166 (2)
H16A	0.3363	0.0910	0.3381	0.020*
C17	0.98418 (9)	0.1213 (2)	0.33957 (10)	0.0217 (2)
H17A	0.9871	0.1160	0.4123	0.033*
H17B	1.0167	0.2396	0.3163	0.033*
H17C	1.0168	0.0069	0.3118	0.033*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br	0.01513 (6)	0.02745 (7)	0.02633 (7)	0.00270 (6)	-0.00771 (4)	-0.00266 (6)
01	0.0108 (3)	0.0227 (4)	0.0123 (3)	-0.0008 (4)	-0.0008 (3)	0.0003 (4)
C2	0.0130 (4)	0.0128 (5)	0.0145 (5)	-0.0002 (5)	0.0009 (4)	0.0007 (5)
C3	0.0135 (4)	0.0200 (5)	0.0139 (5)	-0.0007 (5)	0.0013 (4)	0.0001 (5)
04	0.0200 (4)	0.0308 (5)	0.0132 (4)	-0.0045 (4)	-0.0010 (3)	0.0008 (4)
C4	0.0155 (5)	0.0155 (5)	0.0145 (5)	-0.0015 (5)	-0.0006 (4)	0.0003 (5)
C5	0.0146 (5)	0.0159 (5)	0.0169 (5)	-0.0008 (5)	-0.0031 (4)	-0.0006 (5)
C6	0.0128 (4)	0.0177 (5)	0.0215 (5)	-0.0009 (5)	-0.0020 (4)	-0.0009 (5)
C7	0.0137 (5)	0.0232 (6)	0.0195 (5)	-0.0004 (5)	0.0019 (4)	-0.0014 (6)
C8	0.0147 (5)	0.0239 (6)	0.0150 (5)	-0.0004 (5)	0.0004 (4)	-0.0012 (5)
C9	0.0124 (4)	0.0143 (5)	0.0144 (5)	-0.0010 (5)	-0.0005 (4)	0.0002 (5)
C10	0.0115 (4)	0.0157 (5)	0.0168 (5)	-0.0008 (5)	-0.0012 (4)	-0.0007 (5)
C11	0.0122 (4)	0.0138 (5)	0.0154 (5)	-0.0001 (5)	-0.0015 (4)	-0.0002 (5)
C12	0.0149 (5)	0.0191 (6)	0.0171 (5)	-0.0007 (5)	-0.0005 (4)	0.0017 (5)
C13	0.0178 (5)	0.0195 (6)	0.0170 (5)	-0.0008 (5)	-0.0031 (4)	0.0008 (5)
C14	0.0144 (5)	0.0160 (5)	0.0203 (5)	0.0017 (5)	-0.0046 (4)	-0.0008 (5)
C15	0.0139 (5)	0.0196 (6)	0.0216 (6)	0.0003 (5)	-0.0001 (4)	-0.0012 (5)
C16	0.0138 (5)	0.0198 (6)	0.0163 (5)	-0.0001 (5)	0.0000 (4)	-0.0002 (5)
C17	0.0140 (5)	0.0270 (6)	0.0240 (6)	0.0002 (6)	-0.0036 (4)	-0.0022 (6)

Geometric parameters (Å, °)

Br—C14	1.9008 (13)	C8—C10	1.3983 (16)
O1—C2	1.3617 (14)	C8—H8A	0.9500
O1—C10	1.3727 (14)	C9—C10	1.3944 (16)
C2—C3	1.3551 (16)	C11—C16	1.4036 (17)
C2-C11	1.4757 (16)	C11—C12	1.4059 (16)
C3—C4	1.4475 (17)	C12—C13	1.3914 (17)
С3—НЗА	0.9500	C12—H12A	0.9500
O4—C4	1.2397 (15)	C13—C14	1.3875 (17)
C4—C9	1.4692 (16)	C13—H13A	0.9500
C5—C6	1.3832 (17)	C14—C15	1.3964 (18)
С5—С9	1.4075 (16)	C15—C16	1.3839 (17)
C5—H5A	0.9500	C15—H15A	0.9500

C6—C7	1.4126 (18)	C16—H16A	0.9500
C6—C17	1.5228 (17)	C17—H17A	0.9800
С7—С8	1.3792 (17)	С17—Н17В	0.9800
C7—H7A	0.9500	C17—H17C	0.9800
C2	119.33 (9)	O1—C10—C8	116.36 (10)
C3—C2—O1	122.30 (10)	C9—C10—C8	121.44 (10)
C3—C2—C11	125.75 (11)	C16—C11—C12	119.01 (11)
O1—C2—C11	111.95 (9)	C16—C11—C2	120.72 (10)
C2—C3—C4	122.12 (11)	C12—C11—C2	120.27 (10)
С2—С3—НЗА	118.9	C13—C12—C11	120.42 (11)
С4—С3—НЗА	118.9	C13—C12—H12A	119.8
O4—C4—C3	123.27 (11)	C11—C12—H12A	119.8
O4—C4—C9	122.28 (11)	C14—C13—C12	119.23 (11)
C3—C4—C9	114.45 (10)	C14—C13—H13A	120.4
C6—C5—C9	121.35 (11)	C12—C13—H13A	120.4
С6—С5—Н5А	119.3	C13—C14—C15	121.48 (11)
С9—С5—Н5А	119.3	C13—C14—Br	119.58 (9)
C5—C6—C7	118.19 (11)	C15—C14—Br	118.94 (9)
C5—C6—C17	121.59 (11)	C16—C15—C14	118.97 (12)
C7—C6—C17	120.23 (11)	C16—C15—H15A	120.5
C8—C7—C6	121.99 (11)	C14—C15—H15A	120.5
C8—C7—H7A	119.0	C15-C16-C11	120.88 (12)
C6—C7—H7A	119.0	C15—C16—H16A	119.6
C7—C8—C10	118.46 (11)	C11—C16—H16A	119.6
С7—С8—Н8А	120.8	С6—С17—Н17А	109.5
C10—C8—H8A	120.8	C6—C17—H17B	109.5
C10-C9-C5	118.56 (10)	H17A—C17—H17B	109.5
C10-C9-C4	119.58 (10)	С6—С17—Н17С	109.5
C5-C9-C4	121 87 (10)	H17A—C17—H17C	109.5
01-C10-C9	122.20 (10)	H17B-C17-H17C	109.5
C10-01-C2-C3	0 45 (19)	C4-C9-C10-01	-0.9(2)
C10-O1-C2-C11	-179.69 (13)	C5-C9-C10-C8	-0.9(2)
01 - C2 - C3 - C4	-0.3 (2)	C4-C9-C10-C8	178.91 (13)
$C_{11} - C_{2} - C_{3} - C_{4}$	179.90 (13)	C7—C8—C10—O1	-179.04(14)
C2-C3-C4-O4	179.89 (13)	C7—C8—C10—C9	1.2 (2)
C2—C3—C4—C9	-0.5 (2)	C3—C2—C11—C16	-3.7 (2)
C9—C5—C6—C7	0.7 (2)	Q1—C2—C11—C16	176.44 (12)
C9—C5—C6—C17	-179.82 (14)	C3—C2—C11—C12	175.99 (13)
C5—C6—C7—C8	-0.4 (2)	O1—C2—C11—C12	-3.86 (18)
C17—C6—C7—C8	-179.95 (14)	C16—C11—C12—C13	0.2 (2)
C6—C7—C8—C10	-0.5 (2)	C2-C11-C12-C13	-179.51 (13)
C6—C5—C9—C10	0.0 (2)	C11—C12—C13—C14	0.3 (2)
C6—C5—C9—C4	-179.84 (13)	C12—C13—C14—C15	-0.2 (2)
O4—C4—C9—C10	-179.34 (13)	C12—C13—C14—Br	179.51 (11)
C3—C4—C9—C10	1.0 (2)	C13-C14-C15-C16	-0.4 (2)
04	0.5 (2)	Br—C14—C15—C16	179.84 (11)
C3—C4—C9—C5	-179.17 (13)	C14—C15—C16—C11	1.0 (2)
C2-O1-C10-C9	0.1 (2)	C12-C11-C16-C15	-0.8 (2)
	· · ·		× /

supplementary materials

C2—O1—C10—C8 C5—C9—C10—O1	-179.67 (12) 179.28 (13)	C2-C11-C16-C15		178.85 (14)	
Hydrogen-bond geometry (Å, °)					
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
C3—H3A···O4 ⁱ	0.95	2.49	3.2904 (17)	142.	
C16—H16A····O4 ⁱ	0.95	2.58	3.4394 (16)	151.	
Symmetry codes: (i) $-x+1$, $-y$, $-z+1$.					
Table 2 $\pi - \pi$ interactions (\mathring{A}, \circ) .					
Cg(1) and $Cg(2)$ are the centroids of the	e C5–C10 and C11–C16 rin	gs, respectively.			

0()	0()						
Cg(I)	Cg(J)	Cg–Cg	Alpha	CgI_perp	CgJ_Perp	Slippage	
<i>Cg</i> (1)	$Cg(2)^{i}$	3.895	7.13 (3)	3.579 (2)	-3.430 (2)	1.84	
<i>Cg</i> (1)	$Cg(2)^{ii}$	3.843	7.13 (3)	-3.266 (2)	3.438 (2)	1.72	

Notes: Cg-Cg = distance between ring centroids; Alpha = dihedral angle between planes *I* and *J*; CgI_Perp = perpendicular distance of Cg(I) on ring *J*; CgJ_Perp = perpendicular distance of Cg(J) on ring *I*; Slippage = distance between Cg(I) and perpendicular projection of Cg(J) on Ring *I*. Symmetry codes: (i) 1-x, -0.5+y, 0.5-z, (ii) 1-x, 0.5+y, 0.5-z.

Fig. 2

